Which IoT Development Board Is Right for Your Project?

A Small Selection

Below, I have rounded up a small selection of the most popular hobbyist development boards. Many of them have several different variations that have diverse features. There are many more boards not discussed, so feel free to explore the slew of development boards which might meet your needs better.


These ICs are cheap and plentiful. One of the most common form-factors for the ESP8266 has 8 pins and features just 2 GPIO. Because of this, its price and functionality are very low. There are also boards produced by Sparkfun and Adafruit that breakout more of the GPIO pins and allow USB flashing.



Still need a low-cost IoT board but also require many GPIO pins and a fast processor? The ESP32 features 34 GPIO pins that can support functions such as interrupts, I2C, SPI, capacitive touch, and much more. It also has BLE connectivity, making direct device-to-phone connections much easier. Some popular boards that have the ESP32 chip include DFRobot’s ESP32 Firebeetle, Sparkfun’s ESP32 Thing, and Adafruit’s HUZZAH32.

Sparkfun’s ESP32 Thing

Particle Photon / Mesh

The Particle Photon is a $19 IoT development board that is very easy to create programs for and integrate with IFTTT. The Particle IDE also has a great VS Code extension that allows for the creation of large-scale projects. Since the Particle Cloud is also enterprise focused, it is extremely easy to go from a few prototypes to an entire fleet of devices.

Particle Photon

Particle Mesh boards are even more advanced. They are able to connect to each other and form a mesh network via Bluetooth. The Argon board provides a way to connect the network to WiFi, enabling any other board in the mesh network to receive updates Over-the-Air. The Boron can connect to 2G or 3G cellular networks, enabling devices to go far beyond the reach of WiFi.

Particle Xenon (mesh only board)

Arduino WiFi Boards

Arduino has come out with several WiFi-enabled boards, most notably the Arduino MKR WiFi 1010 and Arduino Nano 33 IoT. These boards tie in closely with the Arduino Cloud and are very simple to program and monitor. The Arduino Cloud allows for the creation of “Things” which can have different properties, letting users read and set variable values with ease.

Arduino Nano 33 IoT

The Raspberry Pi differs from the other boards on this list in that it is a full Linux computer. It supports keyboards, mice, displays via HDMI, and much more. The Pi uses a flavor of Debian called Raspbian, and can run nearly any Debian-supported program. This makes it extremely versatile, as you can create programs in nearly any language, and there are plenty of HATs you can add for extra functionality. The newest member of the Pi family, the Raspberry Pi 4, has a quad-core ARM Cortex-A72 clocked at 1.5GHz, onboard WiFi and Bluetooth, and up to 4GB of RAM.

Raspberry Pi 4, 4GB model

This board is primarily for commercial prototyping, and its purpose is to provide tight security and close integration with Microsoft’s Azure Cloud services. Each module contains a unique-ID, along with Microsoft’s Pluton security subsystem. This ensures all data sent to the cloud is cryptographically secure, unlike most of the other IoT boards on this list, which can be hacked fairly easily.

Avnet’s Azure Sphere Starter Kit

Hackster.io’s Azure Sphere Contest is a great way to explore new projects and get inspired to build your own.

Onion Omega2 LTE

This is one of the lesser-known IoT boards, but it is still a great choice for makers who are looking for a way to integrate their devices with a powerful microprocessor with GPS and LTE capabilities. Although fairly expensive at around $100, it more than pays for itself with its suite of connectivity options.

Source link